Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Histol Histopathol ; 38(2): 165-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35876434

RESUMO

Becker muscular dystrophy (BMD) is a hereditary disease characterized by dystrophin deletion that consequently induces muscle weakness, cardiac hypertrophy and cardiac failure; These conditions are similar to those in Duchenne muscular dystrophy. The circadian rhythm is a physiological phenomenon that is predominantly regulated by the transcription and translation of clock genes. Bmal1 (Brain and muscle Arnt-like protein 1) is one of the core clock genes, and its deficiency disturbs the circadian rhythm, results in cardiac hypertrophy and cardiac failure. Dystrophin expression under diurnal conditions and in Bmal1 deficiency is yet to be elucidated. In this study, we analyzed the heart and lungs sampled during a BMD autopsy. Macroscopical examination revealed a large heart and dilated cardiomyopathy. Microscopical examination revealed an undulated structure, as well as the degeneration, and necrosis of myocardial cells. We also analyzed dystrophin expression in tissues obtained from human autopsies and mice. In human autopsy cases, dystrophin expression was lower in the heart with BMD compared that in the heart with non-BMD hypertrophy. In the heart and muscle of control mice, dystrophin expression was higher at ZT0 than at ZT12. The dystrophin expression was found to be lower in heart-specific Bmal1 knockout mice compared to that in the control mice. Hence, our study indicated that BMD was closely associated with cardiac hypertrophy and cardiac failure, while dystrophin had a diurnal expression pattern in control mice that was regulated by Bmal1.


Assuntos
Cardiomiopatia Dilatada , Distrofina , Insuficiência Cardíaca , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Distrofina/genética , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/metabolismo , Camundongos Knockout
2.
Physiol Behav ; 256: 113960, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115382

RESUMO

Mood disorders such as depression, anxiety, and bipolar disorder are highly associated with disrupted daily rhythms of activity, which are often observed in shift work and sleep disturbance in humans. Recent studies have proposed the REV-ERBα protein as a key circadian nuclear receptor that links behavioural rhythms to mood regulation. However, how the Rev-erbα gene participates in the regulation of mood remains poorly understood. Here, we show that the regulation of the serotonergic (5-HTergic) system, which plays a central role in stress-induced mood behaviours, is markedly disrupted in Rev-erbα-/- mice. Rev-erbα-/- mice exhibit both negative and positive behavioural phenotypes, including anxiety-like and mania-like behaviours, when subjected to a stressful environment. Importantly, Rev-erbα-/- mice show a significant decrease in the expression of a gene that encodes the rate-limiting enzyme of serotonin (5-HT) synthesis in the raphe nuclei (RN). In addition, 5-HT levels in Rev-erbα-/- mice are significantly reduced in the prefrontal cortex, which receives strong inputs from the RN and controls stress-related behaviours. Our findings indicate that Rev-erbα plays an important role in controlling the 5-HTergic system and thus regulates mood and behaviour.


Assuntos
Relógios Circadianos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Humanos , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Serotonina
3.
Neuroscience ; 432: 44-54, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081724

RESUMO

Disturbance of the daily cycles in sleep and wakefulness induced by conditions such as shift work and jet lag can increase the risk of affective disorders including anxiety and depression. The way such circadian disorganization disrupts the regulation of mood, however, is not well understood. More specifically, the impact of circadian disorganization on the daily rhythms of the neuronal function that controls mood remains unclear. We therefore investigated the effects of circadian disorganization on expression rhythms of clock genes as well as immediate early genes (IEGs) in several mood-controlling regions of the brain. To introduce circadian disorganization of behaviors, we exposed male C57BL/6J mice to chronic reversal of the light-dark cycle and we found a marked negative mood phenotype in these mice. Importantly, the most adverse effect of circadian disorganization on expression rhythms of clock and IEGs was observed in the prefrontal cortex (PFC) when compared to that in other mood-related areas of the brain. Dysregulation of molecular rhythms in the PFC is therefore suggested to be associated with the development of mood disorders in conditions including shift work and jet lag.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal , Sono , Vigília
4.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597354

RESUMO

Cardiac fibrosis is a major cause of cardiac dysfunction in hypertrophic hearts. Differentiated embryonic chondrocyte gene 1 (Dec1), a basic helix-loop-helix transcription factor, has circadian expression in the heart; however, its role in cardiac diseases remains unknown. Therefore, using Dec1 knock-out (Dec1KO) and wild-type (WT) mice, we evaluated cardiac function and morphology at one and four weeks after transverse aortic constriction (TAC) or sham surgery. We found that Dec1KO mice retained cardiac function until four weeks after TAC. Dec1KO mice also revealed more severely hypertrophic hearts than WT mice at four weeks after TAC, whereas no significant change was observed at one week. An increase in Dec1 expression was found in myocardial and stromal cells of TAC-treated WT mice. In addition, Dec1 circadian expression was disrupted in the heart of TAC-treated WT mice. Cardiac perivascular fibrosis was suppressed in TAC-treated Dec1KO mice, with positive immunostaining of S100 calcium binding protein A4 (S100A4), alpha smooth muscle actin (αSMA), transforming growth factor beta 1 (TGFß1), phosphorylation of Smad family member 3 (pSmad3), tumor necrosis factor alpha (TNFα), and cyclin-interacting protein 1 (p21). Furthermore, Dec1 expression was increased in myocardial hypertrophy and myocardial infarction of autopsy cases. Taken together, our results indicate that Dec1 deficiency suppresses cardiac fibrosis, preserving cardiac function in hypertrophic hearts. We suggest that Dec1 could be a new therapeutic target in cardiac fibrosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Obstrução do Fluxo Ventricular Externo/complicações , Animais , Biomarcadores , Cardiomegalia/diagnóstico , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomiopatias/diagnóstico , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Expressão Gênica , Testes de Função Cardíaca , Proteínas de Homeodomínio , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Obstrução do Fluxo Ventricular Externo/diagnóstico , Remodelação Ventricular
5.
Am J Pathol ; 189(4): 773-783, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664860

RESUMO

Smad3 has circadian expression; however, whether Smad3 affects the expression of clock genes is poorly understood. Here, we investigated the regulatory mechanisms between Smad3 and the clock genes Dec1, Dec2, and Per1. In Smad3 knockout mice, the amplitude of locomotor activity was decreased, and Dec1 expression was decreased in the suprachiasmatic nucleus, liver, kidney, and tongue compared with control mice. Conversely, Dec2 and Per1 expression was increased compared with that of control mice. In Smad3 knockout mice, immunohistochemical staining revealed that Dec1 expression decreased, whereas Dec2 and Per1 expression increased in the endothelial cells of the kidney and liver. In NIH3T3 cells, Smad3 overexpression increased Dec1 expression, but decreased Dec2 and Per1 expression. In a wound-healing experiment that used Smad3 knockout mice, Dec1 expression decreased in the basal cells of squamous epithelium, promoting wound healing of the mucosa. Finally, the migration and proliferation of Smad3 knockdown squamous carcinoma cells was suppressed by Dec1 overexpression but was promoted by Dec2 overexpression. Dec1 overexpression decreased E-cadherin and proliferating cell nuclear antigen expression, whereas these expression levels were increased by Dec2 overexpression. These results suggest Smad3 is relevant to circadian rhythm and regulates cell migration and proliferation through Dec1, Dec2, and Per1 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular , Proliferação de Células , Células Epiteliais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas Circadianas Period/metabolismo , Proteína Smad3/fisiologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Ritmo Circadiano , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Proteínas Circadianas Period/genética , Fatores de Transcrição/genética
6.
Int J Mol Sci ; 19(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518061

RESUMO

The daily rhythm of mammalian energy metabolism is subject to the circadian clock system, which is made up of the molecular clock machinery residing in nearly all cells throughout the body. The clock genes have been revealed not only to form the molecular clock but also to function as a mediator that regulates both circadian and metabolic functions. While the circadian signals generated by clock genes produce metabolic rhythms, clock gene function is tightly coupled to fundamental metabolic processes such as glucose and lipid metabolism. Therefore, defects in the clock genes not only result in the dysregulation of physiological rhythms but also induce metabolic disorders including diabetes and obesity. Among the clock genes, Dec1 (Bhlhe40/Stra13/Sharp2), Dec2 (Bhlhe41/Sharp1), and Bmal1 (Mop3/Arntl) have been shown to be particularly relevant to the regulation of energy metabolism at the cellular, tissue, and organismal levels. This paper reviews our current knowledge of the roles of Dec1, Dec2, and Bmal1 in coordinating the circadian and metabolic pathways.


Assuntos
Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Relógios Circadianos , Metabolismo Energético , Fatores de Transcrição ARNTL/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos
7.
Chronobiol Int ; 35(4): 499-510, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29271671

RESUMO

The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Glicemia/metabolismo , Ritmo Circadiano , Resistência à Insulina , Miocárdio/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Comportamento Animal , Células Cultivadas , Ritmo Circadiano/genética , Genótipo , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Hiperglicemia/sangue , Hiperglicemia/genética , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Tempo
8.
Histochem Cell Biol ; 148(6): 617-624, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28721450

RESUMO

Bmal1, a clock gene, is associated with depression, hypertrophy, metabolic syndrome and diabetes. Smad3, which is involved in the TGF-ß signaling pathway, plays an important role in the regulation of tumor progression, fibrosis, obesity and diabetes. Our previous report showed that Smad3 has circadian expression in mouse livers. In the current study, we focused on the heart, especially on the myocardial stromal fibroblasts because the roles of Bmal1 and Smad3 in this tissue are poorly understood. Bmal1 and Smad3 have circadian expression in mouse hearts, and their circadian expression patterns were similar. Bmal1 expression decreased in the hearts of whole-body Smad3 knockout mice, whereas Smad3 expression had little effect on heart-specific Bmal1 knockout mice. Both Smad3 knockout and heart-specific Bmal1 knockout mice showed increases in p21, S100A4, CD206 and TNF-α expression in the myocardial stromal fibroblasts and macrophage compared to control mice. We also examined Smad3, Bmal1 and Dec1 expression in human tissue from old myocardial infarctions. Expression of Smad3, Bmal1 and Dec1 decreased in the stromal fibroblasts of tissue from old myocardial infarctions compared to control cases. On the other hand, p21, S100A4 and TNF-α increased in the stromal fibroblasts of tissue from old myocardial infarctions. Furthermore, expression of Smad3, Bmal1 and Dec1 decreased in TNF-α treated-NIH3T3 cells but expression of p21 and S100A4 increased. This new evidence suggests that Smad3 and Bmal1 regulate p21 and S100A4 expression in myocardial stromal fibroblasts through TNF-α.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Fibroblastos/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína Smad3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Células NIH 3T3 , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteína Smad3/deficiência , Proteína Smad3/genética
9.
Physiol Rep ; 5(5)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28292881

RESUMO

The tuberomammillary nucleus (TMN) of the posterior hypothalamus has a high density of histaminergic neurons, the projection fibers of which are present in many areas of the brain, including the nucleus tractus solitarius (NTS), which controls arterial pressure (AP). In this study, we investigated whether the TMN-NTS pathway is involved in central cardiovascular regulation. Bicuculline, a gamma-aminobutyric acid type A (GABAA) receptor antagonist, was microinjected into the ventral TMN of anesthetized rats and its effects on AP and heart rate (HR) were observed. We also evaluated the effect of cetirizine, an H1 receptor antagonist, microinjected into the NTS on cardiovascular responses induced by electrical stimulation of the TMN Both AP and HR increased following bicuculline microinjection into the ventral TMN Similar pressor and tachycardic responses were observed after electrical stimulation of the ventral TMN Microinjection of cetirizine into the NTS partially inhibited the pressor response but had no effect on HR Finally, the treadmill test was associated with a high level of c-Fos expression in both ventral TMN and NTS neurons. These results suggest that the TMN-NTS pathway is involved in regulation of AP, presumably under a high-arousal phase, such as that during exercise.


Assuntos
Pressão Arterial/efeitos dos fármacos , Cetirizina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H1/farmacologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Animais , Bicuculina/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
10.
PLoS One ; 9(11): e112811, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389966

RESUMO

Cardiac function is highly dependent on oxidative energy, which is produced by mitochondrial respiration. Defects in mitochondrial function are associated with both structural and functional abnormalities in the heart. Here, we show that heart-specific ablation of the circadian clock gene Bmal1 results in cardiac mitochondrial defects that include morphological changes and functional abnormalities, such as reduced enzymatic activities within the respiratory complex. Mice without cardiac Bmal1 function show a significant decrease in the expression of genes associated with the fatty acid oxidative pathway, the tricarboxylic acid cycle, and the mitochondrial respiratory chain in the heart and develop severe progressive heart failure with age. Importantly, similar changes in gene expression related to mitochondrial oxidative metabolism are also observed in C57BL/6J mice subjected to chronic reversal of the light-dark cycle; thus, they show disrupted circadian rhythmicity. These findings indicate that the circadian clock system plays an important role in regulating mitochondrial metabolism and thereby maintains cardiac function.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Mitocôndrias/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Animais , Proteínas CLOCK/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Transporte de Elétrons/fisiologia , Enoil-CoA Hidratase/metabolismo , Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotoperíodo , Racemases e Epimerases/metabolismo
11.
Physiol Genomics ; 45(1): 58-67, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23132760

RESUMO

The nucleus tractus solitarii (NTS) controls the cardiovascular system during exercise, and alteration of its function may underlie exercise-induced cardiovascular adaptation. To understand the molecular basis of the NTS's plasticity in regulating blood pressure (BP) and its potential contribution to the antihypertensive effects, we characterized the gene expression profiles at the level of the NTS after long-term daily wheel running in spontaneously hypertensive rats (SHRs). Genome-wide microarray analysis was performed to screen for differentially expressed genes in the NTS between exercise-trained (12 wk) and control SHRs. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes database revealed that daily exercise altered the expression levels of NTS genes that are functionally associated with metabolic pathways (5 genes), neuroactive ligand-receptor interactions (4 genes), cell adhesion molecules (3 genes), and cytokine-cytokine receptor interactions (3 genes). One of the genes that belonged to the neuroactive ligand-receptor interactions category was histamine receptor H(1). Since we confirmed that the pressor response induced by activation of this receptor is increased after long-term daily exercise, it is suggested that functional plasticity in the histaminergic system may mediate the facilitation of blood pressure control in response to exercise but may not be involved in the lowered basal BP level found in exercise-trained SHRs. Since abnormal inflammatory states in the NTS are known to be prohypertensive in SHRs, altered gene expression of the inflammatory molecules identified in this study may be related to the antihypertensive effects in exercise-trained SHRs, although such speculation awaits functional validation.


Assuntos
Pressão Sanguínea/fisiologia , Esforço Físico/fisiologia , Ratos Endogâmicos SHR/metabolismo , Núcleo Solitário/fisiologia , Transcriptoma/genética , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Análise em Microsséries , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Endogâmicos SHR/fisiologia , Receptores Histamínicos/metabolismo , Núcleo Solitário/metabolismo
12.
Endocr J ; 59(6): 447-56, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22361995

RESUMO

Understanding how the 24-hour blood-pressure rhythm is programmed has been one of the most challenging questions in cardiovascular research. The 24-hour blood-pressure rhythm is primarily driven by the circadian clock system, in which the master circadian pacemaker within the suprachiasmatic nuclei of the hypothalamus is first entrained to the light/dark cycle and then transmits synchronizing signals to the peripheral clocks common to most tissues, including the heart and blood vessels. However, the circadian system is more complex than this basic hierarchical structure, as indicated by the discovery that peripheral clocks are either influenced to some degree or fully driven by temporal changes in energy homeostasis, independent of the light entrainment pathway. Through various comparative genomic approaches and through studies exploiting mouse genetics and transgenics, we now appreciate that cardiovascular tissues possess a large number of metabolic genes whose expression cycle and reciprocally affect the transcriptional control of major circadian clock genes. These findings indicate that metabolic cycles can directly or indirectly affect the diurnal rhythm of cardiovascular function. Here, we discuss a framework for understanding how the 24-hour blood-pressure rhythm is driven by the circadian system that integrates cardiovascular and metabolic function.


Assuntos
Pressão Sanguínea/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Animais , Pressão Sanguínea/genética , Encéfalo/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/fisiologia , Fenômenos Fisiológicos Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Fotoperíodo
13.
J Biol Chem ; 286(45): 39560-72, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21921030

RESUMO

We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (Gck(K140E) and Gck(P417R)) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck(+/+) < Gck(P417R/+), Gck(K140E)(/+) < Gck(P417R/P417R), Gck(P417R/K140E), and Gck(K140E/K140E)) and with the level of expression of GCK in liver. Each mutant was produced as the recombinant enzyme in Escherichia coli, and analysis of k(cat) and tryptophan fluorescence (I(320/360)) during thermal shift unfolding revealed a correlation between thermostability and the severity of hyperglycemia in the whole animal. Disruption of the glucokinase regulatory protein-binding site (GCK(K140E)), but not the ATP binding cassette (GCK(P417R)), prevented inhibition of enzyme activity by glucokinase regulatory protein and corresponded with reduced responsiveness to the GKA drug. Surprisingly, extracts from liver of diabetic GCK mutants inhibited activity of the recombinant enzyme, a property that was also observed in liver extracts from mice with streptozotocin-induced diabetes. These results indicate a relationship between genotype, phenotype, and GKA efficacy. The integration of forward genetic screening and biochemical profiling opens a pathway for preclinical development of mechanism-based diabetes therapies.


Assuntos
Alquilantes/efeitos adversos , Diabetes Mellitus Experimental , Ativadores de Enzimas/metabolismo , Etilnitrosoureia/efeitos adversos , Glucoquinase , Fígado/enzimologia , Mutação de Sentido Incorreto , Alquilantes/farmacologia , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Glicemia/genética , Glicemia/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Etilnitrosoureia/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Glucoquinase/antagonistas & inibidores , Glucoquinase/biossíntese , Glucoquinase/genética , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/enzimologia , Hiperglicemia/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Mutantes , Especificidade de Órgãos , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Hypertens ; 29(8): 1536-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21666494

RESUMO

OBJECTIVES: The brainstem nucleus of the solitary tract (nucleus tractus solitarii, NTS) is a pivotal region for regulating the set-point of arterial pressure, the mechanisms of which are not fully understood. Based on evidence that the NTS exhibits O2-sensing mechanisms, we examined whether a localized disturbance of blood supply, resulting in hypoxia in the NTS, would lead to an acute increase in arterial pressure. METHODS: Male Wistar rats were used. Cardiovascular parameters were measured before and after specific branches of superficial dorsal medullary veins were occluded; we assumed these were drainage vessels from the NTS and would produce stagnant hypoxia. Hypoxyprobe-1, a marker for detecting cellular hypoxia in the post-mortem tissue, was used to reveal whether vessel occlusion induced hypoxia within the NTS. RESULTS: Following vessel occlusion, blood flow in the dorsal surface of the medulla oblongata including the NTS region showed an approximately 60% decrease and was associated with hypoxia in neurons located predominantly in the caudal part of the NTS as revealed using hypoxyprobe-1. Arterial pressure increased and this response was pronounced significantly in both magnitude and duration when baroreceptor reflex afferents were sectioned. CONCLUSION: These results suggest that localized hypoxia in the NTS increases arterial pressure. We suggest this represents a protective mechanism whereby the elevated systemic pressure is a compensatory mechanism to enhance cerebral perfusion. Whether this physiological mechanism has any relevance to neurogenic hypertension is discussed.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Hipóxia/fisiopatologia , Bulbo/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Núcleo Solitário/irrigação sanguínea , Animais , Barorreflexo/fisiologia , Veias Cerebrais/fisiopatologia , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Bulbo/fisiopatologia , Ratos , Ratos Wistar , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia
15.
Am J Physiol Heart Circ Physiol ; 301(2): H523-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622829

RESUMO

Axons of histamine (HA)-containing neurons are known to project from the posterior hypothalamus to many areas of the brain, including the nucleus tractus solitarii (NTS), a central brain structure that plays an important role in regulating arterial pressure. However, the functional significance of NTS HA is still not fully established. In this study, we microinjected HA or 2-pyridylethylamine, a HA-receptor H(1)-specific agonist, into the NTS of urethane-anesthetized Wister rats to identify the potential functions of NTS HA on cardiovascular regulation. When HA or H(1)-receptor-specific agonist was bilaterally microinjected into the NTS, mean arterial pressure (MAP) and heart rate (HR) were significantly increased, whereas pretreatment with the H(1)-receptor-specific antagonist cetirizine into the NTS significantly inhibited the cardiovascular responses. The maximal responses of MAP and HR changes induced by HA or H(1)-receptor-specific agonist were dose dependent. We also confirmed gene expression of HA receptors in the NTS and that the expression level of H(1) mRNA was higher than that of the other subtypes. In addition, we found that H(1) receptors are mainly expressed in neurons of the NTS. These findings suggested that HA within the NTS may play a role in regulating cardiovascular homeostasis via activation of H(1) receptors expressed in the NTS neurons.


Assuntos
Pressão Sanguínea , Frequência Cardíaca , Histamina/metabolismo , Receptores Histamínicos H1/metabolismo , Núcleo Solitário/metabolismo , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Cetirizina/administração & dosagem , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Histamina/administração & dosagem , Agonistas dos Receptores Histamínicos/administração & dosagem , Antagonistas dos Receptores Histamínicos H1/administração & dosagem , Imuno-Histoquímica , Masculino , Microinjeções , Piridinas/administração & dosagem , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Histamínicos H1/efeitos dos fármacos , Receptores Histamínicos H1/genética , Núcleo Solitário/efeitos dos fármacos
16.
J Hypertens ; 29(4): 732-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21358418

RESUMO

OBJECTIVES: Recent studies have demonstrated that pro-inflammatory molecules such as junctional adhesion molecules-1 are highly expressed in the nucleus tractus solitarii (NTS) of the spontaneously hypertensive rat (SHR), compared to normotensive rats (Wistar-Kyoto rats: WKY), suggesting that the NTS of SHR may exhibit an abnormal inflammatory state. In the present study, we tested whether gene expression of inflammatory markers such as cytokines and chemokines is altered in the NTS of SHR and whether this contributes to the hypertensive phenotype in the SHR. METHODS: We have performed RT Profiler PCR arrays in the NTS of SHR and WKY, which were designed to specifically target major cytokines/chemokines and their receptors. To validate PCR array results quantitative RT-PCR was performed. Microinjection studies using anesthetized rats were also carried out to examine whether validated inflammatory molecules exhibit functional roles on cardiovascular regulation at the level of the NTS. RESULTS: Five inter-related transcripts were identified to be differentially expressed between the NTS of SHR and WKY. They include chemokine (C-C motif) ligand 5 (Ccl5), and its receptors, chemokine (C-C motif) receptor 1 and 3. All of them were down-regulated in the NTS of SHR compared to WKY. Moreover, we found that the protein Ccl5 microinjected into the NTS significantly decreased baseline arterial pressure and that the response was greater in the SHR compared to the WKY (-33.2±3.2 vs. -8.8±1.6 mmHg, P<0.001), demonstrating that its down-regulation in the NTS may contribute to hypertension in the SHR. CONCLUSION: We suggest that gene expression of specific chemokines may be down-regulated to protect further inflammatory reactions in the NTS of SHR at the expense of arterial hypertension.


Assuntos
Quimiocina CCL5/metabolismo , Regulação para Baixo , Hipertensão/genética , Animais , Perfilação da Expressão Gênica , Imuno-Histoquímica , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
PLoS One ; 6(2): e17339, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21364960

RESUMO

BACKGROUND: The loss of diurnal rhythm in blood pressure (BP) is an important predictor of end-organ damage in hypertensive and diabetic patients. Recent evidence has suggested that two major physiological circadian rhythms, the metabolic and cardiovascular rhythms, are subject to regulation by overlapping molecular pathways, indicating that dysregulation of metabolic cycles could desynchronize the normal diurnal rhythm of BP with the daily light/dark cycle. However, little is known about the impact of changes in metabolic cycles on BP diurnal rhythm. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that feeding-fasting cycles could affect the diurnal pattern of BP, we used spontaneously hypertensive rats (SHR) which develop essential hypertension with disrupted diurnal BP rhythms and examined whether abnormal BP rhythms in SHR were caused by alteration in the daily feeding rhythm. We found that SHR exhibit attenuated feeding rhythm which accompanies disrupted rhythms in metabolic gene expression not only in metabolic tissues but also in cardiovascular tissues. More importantly, the correction of abnormal feeding rhythms in SHR restored the daily BP rhythm and was accompanied by changes in the timing of expression of key circadian and metabolic genes in cardiovascular tissues. CONCLUSIONS/SIGNIFICANCE: These results indicate that the metabolic cycle is an important determinant of the cardiovascular diurnal rhythm and that disrupted BP rhythms in hypertensive patients can be normalized by manipulating feeding cycles.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Ritmo Circadiano/fisiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fenômenos Fisiológicos Cardiovasculares/genética , Ritmo Circadiano/genética , Jejum/metabolismo , Jejum/fisiologia , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gluconeogênese/genética , Frequência Cardíaca/fisiologia , Hipertensão/genética , Lipogênese/genética , Masculino , Metabolismo/genética , Metabolismo/fisiologia , Fotoperíodo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
18.
Auton Neurosci ; 162(1-2): 15-23, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21334266

RESUMO

Since the nucleus tractus solitarii (NTS) is a pivotal region for regulating the set-point of arterial pressure, we propose here its role in the development of neurogenic hypertension. Given the findings of recent studies suggesting that the NTS of spontaneously hypertensive rats (SHR) exhibits a specific inflammatory state characterized by leukocyte accumulation within the NTS microvasculature, we hypothesized that gene expression levels of apoptotic factors are altered in the NTS of SHR compared to normotensive Wistar-Kyoto rats (WKY). To test this hypothesis, we used RT(2) Profiler PCR arrays targeting apoptosis-related factors. We found that gene expression of the death receptor Fas (tumor necrosis factor receptor superfamily, member 6) and the cysteine-aspartic acid protease caspase 12 were down-regulated in the NTS of both adult hypertensive and young pre-hypertensive SHR compared to age-matched WKY. On the other hand, an anti-apoptotic factor, neuronal apoptosis inhibitory protein, was highly increased in the NTS of SHR. These results suggest that the NTS of SHR exhibits an anti-apoptotic condition. Furthermore, this profile appears not to be secondary to hypertension. Whether this differential gene expression in the NTS contributes to the hypertensive state of the SHR via alteration of neuronal circuitry regulating cardiovascular autonomic activity awaits elucidation.


Assuntos
Apoptose/fisiologia , Núcleo Solitário/patologia , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Química Encefálica/genética , Química Encefálica/fisiologia , Caspase 12/genética , Caspase 12/metabolismo , Interpretação Estatística de Dados , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Bulbo/metabolismo , Proteína Inibidora de Apoptose Neuronal/biossíntese , Proteína Inibidora de Apoptose Neuronal/genética , RNA/biossíntese , RNA/genética , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sistema Nervoso Simpático/fisiologia
19.
Am J Physiol Regul Integr Comp Physiol ; 298(1): R183-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19907006

RESUMO

Recent gene array and molecular studies have suggested that an abnormal gene expression profile of interleukin-6 (IL-6) in the nucleus tractus solitarii (NTS), a pivotal region for regulating arterial pressure, may be related to the development of neurogenic hypertension. However, the precise functional role of IL-6 in the NTS remains unknown. In the present study, we have tested whether IL-6 affects cardiovascular control at the level of the NTS. IL-6 (1, 10, and 100 fmol) was microinjected in the NTS of Wistar rats (280-350 g) under urethane anesthesia. Although the baseline levels of arterial pressure and heart rate did not change following IL-6 injections, the cardiac baroreflex in response to increased arterial pressure was dose-dependently attenuated. In addition, IL-6 (100 fmol) microinjections also attenuated l-glutamate-induced bradycardia at the level of the NTS. Immunohistochemical detection of IL-6 in naïve rats demonstrated that it was predominantly observed in neurons within the brain stem, including the NTS. These findings suggest that IL-6 within the NTS may play an important role for regulating cardiovascular control via modulation of input signals from baroreceptor afferents. Whether the abnormal gene expression of IL-6 in the NTS is associated in a causal way with hypertension remains to be resolved.


Assuntos
Barorreflexo/efeitos dos fármacos , Coração/fisiologia , Interleucina-6/farmacologia , Núcleo Solitário/efeitos dos fármacos , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Interleucina-6/administração & dosagem , Interleucina-6/metabolismo , Masculino , Microinjeções , Modelos Animais , Ratos , Ratos Wistar , Núcleo Solitário/metabolismo
20.
Dev Biol ; 339(1): 38-50, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20025866

RESUMO

The hypothalamic neuronal circuits that modulate energy homeostasis become mature and functional during early postnatal life. However, the molecular mechanism underlying this developmental process remains largely unknown. Here we use a mouse genetic approach to investigate the role of gamma-protocadherins (Pcdh-gammas) in hypothalamic neuronal circuits. First, we show that rat insulin promoter (RIP)-Cre conditional knockout mice lacking Pcdh-gammas in a broad subset of hypothalamic neurons are obese and hyperphagic. Second, specific deletion of Pcdh-gammas in anorexigenic proopiomelanocortin (POMC) expressing neurons also leads to obesity. Using cell lineage tracing, we show that POMC and RIP-Cre expressing neurons do not overlap but interact with each other in the hypothalamus. Moreover, excitatory synaptic inputs are reduced in Pcdh-gamma deficient POMC neurons. Genetic evidence from both knockout models shows that Pcdh-gammas can regulate POMC neuronal function autonomously and non-autonomously through cell-cell interaction. Taken together, our data demonstrate that Pcdh-gammas regulate the formation and functional integrity of hypothalamic feeding circuitry in mice.


Assuntos
Caderinas/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Linhagem da Célula , Metabolismo Energético , Hipotálamo/citologia , Imuno-Histoquímica , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/citologia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...